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A relation connecting the reflexion and transmission coefficients for scattering 
of water waves by a fixed body with the far-field radiated waves due to forced 
motions of the same body is derived. Two alternative derivations are given, in- 
cluding a simple argument based on the analysis of an appropriate linear super- 
position of the two problems, and a more formal application of Green’s theorem 
to the two potentials. For bodies with horizontal symmetry, the transmission and 
reflexion coefficients are related to the phase angles of the far-field radiated waves 
associated with symmetric and antisymmetric forced motions of the body. Some 
general conclusions follow for arbitrary symmetric bodies, and these are verified 
in specific cases by comparison with existing solutions. The applicability of t.hese 
relations to other types of wave problem is noted. 

1. Introduction 
It is customary to call the interaction of incident plane waves with a fixed body 

a ‘scattering ’ problem and the generation of waves by forced oscillatory motion 
of the body in an otherwise undisturbed fluid a ‘radiation’ problem. From the 
mathematical viewpoint these two problems differ in terms of the boundary con- 
dition on the body and the far-field conditions. From the physical viewpoint 
scattering and radiation appear to be unrelated, except in long-wavelength 
approximations, where the local influence of the body on the surrounding fluid is 
the same for both problems. 

In  spite of the apparent differences between the scattering and radiation 
problems, there exist certain relationships between them which are consequences 
of reciprocity principles and Green’s theorem. A particularly useful example, 
known as ‘ Haskind’e relations ’ in ship hydrodynamics, provides a linear relation 
between the exciting forces exerted by incident waves on a fixed body and the 
amplitude of the far-field radiated waves generated by forced motions of the body 
in otherwise calm water. From considerations of the energy flux a t  infinity, one 
can then obtain a relation between the damping force in calm water and the 
exciting force in incident waves, as shown by Newman ( 1962). A general review 
of this subject has been given by Ogilvie (1973). 

In  this paper attention is focused on the reflexion and transmission coefficients 
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of the scattering problem, for two-dimensional motion involving the interaction 
of an incident plane progressive wave system with a long cylindrical body. The 
body generators are horizontal and parallel (or possibly oblique) to the wave 
crests. In  this situation a portion of the incident wave energy is reflected by the 
body as an ‘upstream’ propagating wave, while the remainder is transmitted 
past the body as a ‘downstream’ propagating wave, the reflexion and trans- 
mission coefficients being defined as the ratios of the amplitudes of these two wave 
systems to the amplitude of the incident wave. I n  order to relate these ratios to 
properties of the radiation problem, we shall first construct in 3 3 a linear combina- 
tion of the scattering and radiation solutions such that there is no net wave system 
clownstream of the body, linearization being assumed throughout so that super- 
position of solutions is valid. The resulting ‘ composite ’ solution satisfies a 
boundary-value problem with the same boundary condition on the body as for the 
radiation problem (since the scattering solution involves a homogeneous boundary 
conclition on the body), zero wave propagation a t  downstream infinity (by 
definition of the composite solution) and a prescribed combination of incident 
and reflected waves a t  upstream infinity. 

On restricting the normal velocity on the body to  be of fixed phase, it follows 
that the part of the composite solution with conjugate phase satisfies a boundary- 
value problem which is homogeneous except for the presence of upstream standing 
waves. It is then argued heuristically that, unless the transmission coefficient of 
tfhe body is zero, the upstream waves of this otherwise homogeneous problem 
must vanish. This provides a simple relation between the far-field characteristics 
of the radiation and scattering problems. The same relation is confirmed in 5 4 by 
i~ more formal derivation based on Green’s theorem. 

We seek then to  determine the reflexion and transmission coefficients from the 
solution of the radiation problem. I n  fact, the radiation problem is non-unique 
without specification of the particular forced motion of the body, and it is neces- 
sary to consider two independent radiation problems. Attention is restricted in 
9 5 to  bodies which are symmetric about the vertical (y) axis, and the appropriate 
independent radiation problems are respectively symmetric and antisymmetric in 
x, i.e. those for forced vertical and horizontal niotions of the body. The reflexion 
and transmission coefficients can then be expressed in terms of the phase angles 
8, and 8, of the symmetric and antisymmetric radiated waves. 

Various conclusions follow, both for general and specific body geometries. 
Since the reflexion and transmission coefficients are unique properties of the body 
geometry and wavelength, the same must be true of the phase angles 8, and S,, 
without specification of the forced motions of the body. Thus every symmetric 
(antisymmetric) forced motion of the body will generate radiated waves with 
the same phase angle J8(cYa), subject to  a possible shift of 180”. Since, from the 
Haskind relations, the corresponding forces or moments are directly proportional 
to the complex amplitudes of the radiated waves, similar conclusions apply to  
the phase angles of the exciting forces and moment. I n  particular, the horizontal 
exciting force is in phase with the exciting moment about the roll axis. For 
specific body shapes it is possible to verify these results by comparison with 
existing calculations of the reflexion and transmission coeEcients, the exciting 
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forces and moment, and the characteristics of the radiated waves. Such coni- 
parisons are made in 5 6 for a submerged circular cylinder and in $ 7  for floating 
or submerged vertical barriers. 

Our derivation is based on consideration of two-dimensional surface waves, 
but since the analysis depends only on a simple superposition of the far-field 
waves and is independent of the governing partial differential equation, similar 
conclusions hold for other types of linear wave problems, including water waves 
a t  oblique incidence, acoustic waves in a waveguide below the cut-off frequency 
and two-dimensional internal waves a t  frequencies below the Brunt-Vaisalb 
frequency. I n  the latter context it may be noted that our analysis is similar in 
certain respects to that of Drazin & Moore (1967)) who used an analogous super- 
position of two wave systems in order to satisfy the radiation conditions for 
steady flow past an obstacle, and that the same scheme has been exploited in 
a numerical solution of the steady-state ship-wave problem by Mei & Chen 
(1974). 

2. The radiation and scattering problems 
Assume that a long cylindrical body with horizontal generators is situated on 

or beneath the free surface of a fluid of constant or infinite depth. For the sake 
of definiteness we assume that the fluid motion is two-dimensional and confined 
to planes normal to the cylinder generators, but the results which follow are 
identical in the more general instance where the motion is sinusoidal in the 
direction parallel to the cylinder, as in the case of a cylinder with oblique incident 
waves. The problem is assumed to be linearized, with oscillatory time dependence 
of frequency w/27r. Thus the velocity potential can be written in the form 

(1) 

with a similar representation for the free-surface elevation. Here (x,y) are 
Cartesian co-ordinates, taken in the usual sense with x horizontal and positive t,o 
the right. The potential $(x, y) = ~ ( x ,  y) + i@(z, y) is complex valued to represent 
the magnitude and phase of the oscillatory motion. 

The velocity potential is governed by Laplace’s equation throughout the 
interior of the fluid domain, with appropriate boundary conditions on the free 
surface and lower boundary of the fluid. However, these aspects of the boundary- 
value problem do not concern us explicitly here, and we need consider only the 
remaining boundary conditions, those on the body and a t  infinity. 

I n  the radiation problem a normal velocity Re (f eiot) is prescribed on the body 
surface, with f a given function of position on the body. Denoting the radiation 
potential by q5r, the appropriate boundary condition on the body is 

@(x, Y, t )  = Re [qw’ Y) eiwtl, 

a$,lan = f. (2)  

Suitable radiation conditions must be imposed a t  large distances from the body, 
namely that the waves are outgoing, or that  on the free surface 

(3) 
18-2 
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Here Art are complex coefficients, representing the wave amplitude and phase at  
infinity. 

In  the scattering problem, with potential $s, the body is stationary and waves 
are incident from infinity. Hence the boundary conditions are that, on the body, 

&$,/an = 0, (4) 

and a t  infinity on the free surface, 

Here eik-z denotes the incident wave, assumed to  be of unit amplitude and 
propagat,ing from x = +a, whereas R and T are the (complex) reflexion and 
transmission coefficients as defined in 5 1. 

3. The composite problem 
Let us assume that T $I 0 and define the composite potential 

$c = $4.- (A-/T) $5 (6) 

such that there are no waves a t  z = -a. This potential satisfies the boundary- 
value problem stated in $ 2  above except t8hat on the body, from ( 2 )  and (4), 

a$& = f , ( 7 )  

whereas a t  infinity on the free surface, from (3) and ( 5 ) ,  

I ( S b )  

$, (iof+-A-R/T)e-iKx- (A-/T)eiKr,  x + + a ,  

The forced motion of the body surface is arbitrary, but we shall restrict f to be 
real, so that the normal velocity of the body is in phase with f coswt. It then 
follows that the imaginary part 1c., of the composite potential 9, satisfies a homo- 
geneous boundary condition on the body, as well as a t  downstream infinity, and 
the only inhomogeneity in the boundary-value problem for $,is that a t  upstream 
infinity it must be equal to a standing wave given by the imaginary part of (Sa) .  
Thus the potential $, corresponds to the problem where a standing wave is 
present a t  x = + 00 and the body is stationary. Equivalently, $, is the solution of 
the scattering problem with zero transmission coefficient, T = 0,  and complete 
reflexion, IRI = 1, in contradiction to our assumption that T + 0. This leads us 
to one of two possible conclusions: either the transmission coefficient is zero or 
the potential II., must vanish a t  both infinities. 

The occurrence of complete reflexion and zero transmission is generally 
presumed to be impossible except for pathological body geometries and special 
wavelengths of the incident wave. The only known examples of complete 
reflexion (excluding the trivial case where the body completely blocks off the 
flow) involve situations with a resonant cavity of some sort; hence complete 
reflexion is known to occur for water-wave scattering by a pair of parallel 
obstacles a t  discrete eigenfrequencies where the fluid region between the two 

x+-m. 
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obstacles is resonant. This phenomenon is discussed by Evans & Morris (1972u), 
Evans (1974) and Newman (1974). 

Below we shall ignore special cases of this nature, and assume that the body 
geometry and wavelength are such that complete reflexion is impossible. This 
can be reconciled with the boundary-value problem for $c = Im (I$~) if and only 
if the upstream standing wave of that problem vanishes, and hence the imaginary 
part of (8a )  must be zer0.t Thus it follows that 

(9) 

(10) 

Im[(A+- A-RIT) e--iKx- (A-/T)eiKz] = 0, 

A,  - A-R/T + AT/T* = 0, 

or for this relation to be independent of x, 

where an asterisk denotes a complex conjugate. Equation (10) is the principal 
result of our analysis, and provides a relation between the far-field radiated wave 
amplitudes A* and the reflexion and transmission coefficients R and T.  

An alt,ernative relation to (10) can be obtained by multiplying its conjugate 
by R, and adding this product to (10). It follows that 

A+ + AT R + AT( 1 - RR*)/T* = 0. (11) 

From conservation of energy in the scattering problem, 

RR*+TT* = 1.  

Using ( 12) t o  replace the factor in parentheses in ( I  1) gives the desired expression : 

A++A:R+AFT = 0. (13) 

4. Derivation based on Green’s theorem 
While the derivation in 9 3 is very simple, its heuristic nature is obvious and 

one may prefer a more formal mathematical approach. For this purpose we 
define the operator 

(14) 46 $) = j ($ w / a n  - $ w a n )  4 
C 

where Cis t8he closed contour including the free surface, body surface, fluid bottom 
and two vertical closures a t  x = & 00. By Green’s theorem I E 0 for any pair of 
functions q5 and $which are harmonic in the fluid region bounded by C, and if 
these functions satisfy the appropriate boundary conditions on the free surface 
and bottom there is no contribution from those portions of C. By straightforward 
reduction using the radiation and boundary conditions (2)-(5), it follows that 

I($;-*,$,) = 0 = -2iMK(ATR+ATT)- f*q5,dl. 
!CB 

t In  general ykc must vanish throughout the fluid, but this additional conclusion is not 
required here, and depends on a uniqueness proof which has only been established for 
special body geometries. 
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Here C, denotes the body contour and I I f  is a positive real constant, defined for 
water waves as 

2Kh + sinh 2Kh 
4K cosh2 Kh * 

M = (sech2Kh) cosh2 Kydy = S"' 
Equation (15) gives the energy relation (12), expressing conservation of energy 

flux in the scattering problem. Equation (16) is the general two-dimensional form 
of Haskind's relations and, by appropriate choice of the function f, can be used 
to find the scattered wave force 

r r 

and a corresponding expression for the moment in terms of the radiated wave 
amplitude A,. (Here p is the fluid density, p ,  the pressure in the scattering prob- 
lem, and the linearized Bernoulli equation has been used.) 

Subtracting (17)  from (16) gives the relation 

I (#r-$F,$s)  = 0 = 2 i M K ( A + + A T R + A I T ) -  (f-f*)$,dZ. (20) J CB 

Now iff is restricted to be real, as in 3 3, the integral in ( 2 0 )  vanishes and (1 3) 
is obtained. This derivation of (13) remains valid if T = 0, in cont,rast to the 
analysis of 8 3. 

5. Symmetric obstacles 
I n  order to simplify the application of (13) we shall restrict our attention to 

bodies which are symmetric about the plane x = 0.  It follows that the two 
radiation problems in which the normal velocity distribution on the body, repre- 
sented by the function f, is respectively symmetric and antisymmetric may be 
considered separately. I n  the symmetric case, exemplified by vertical oscillations 
of t,he body, the radiation potent#ial$,, is an even function of 2, and thus 

A+ = A- A,. ( 2 1 )  

I n  the antisymmetric case, exemplified by horizontal oscillations of the body, 
the radiation potential is an odd function of x, and thus 

A ,  = - A -  = A,. ( 2 2 )  

Applying (13) separately in each case gives the equations 

Hence the reflexion and transmission coefficients can be expressed in terms of the 
phase angles d,,, = arg A , ,  of the symmetric and antisymmetric radiated waves 
in the form 

R = - Q[exp (2i8,) +exp (2i8,)], ( 2 5 )  

( 2 6 )  T = +[exp ( 2 3 , )  -exp (2i8,)]. 
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Equations (25) and (26) can be replaced by parametric relations 

R = - cos a ei$, T = i sin a eiP, (27), (28) 

where a = Sa-Ss, ,8 = Sa+Ss. P9),  (30) 

I n  this form the energy relation (12) is obvious, as is the phase-angle relation 
(argR- argTI = &r, which was derived by Newman (1965, equation (2.20)). 
From (29) and (30) it is apparent that the parameters a and p, which determine 
the magnitude and phase, respectively, of the reflexion and transmission coeffi- 
cients, depend uniquely on the phase angles 8, and 8, of the radiation problem, 
and vice versa. Thus a knowledge of both the symmetric and antisymmetric 
radiation phase angle is necessary, in general, to  determine R or T. This limits 
the utility of our relations to  those problems where solutions of both the symmetric 
and antisymmetric radiation problems have been found. 

On the other hand, two general conclusions follow which add significantly to  
the value of these relations. First note that we have dealt rather abstractly with 
a symmetric and antisymmetric radiation potential, specifying only that the 
normal velocity on the body surface should be respectively even or odd in x, 
and with the added restriction that this normal velocity must be of constant 
phase proportional to k cos wt (i.e.fmust be real). There are an infinite number of 
modes of body motions possible in each case, and yet it is clear from (27)-(30) 
that, since R and T are uniquely specified by the body shape and frequency, the 
same must be true of the radiation phase angles 8, and S,, with a possible ambi- 
guity of +_ 180". Thus it follows that the phase of the radiated waves takes the 
same value, S,, for all possible symmetric modes of body motion and the same 
value, 8,) for all possible antisymmetric modes, modulo 180". I n  particular, 
vertical oscillations of the body and symmetric source-like dilations of the body 
mill produce radiated waves of the same phase, 6,; likewise, horizontal oscillations 
and rolling oscillations will produce radiated waves of the same phase angle, 
- + Sa, at x = & co. Moreover, we recall that the Haskind relations (16) and (19) 
relate the amplitude and phase of the exciting force or moment exerted on the 
body in the scattering problem to the amplitude and phase of the radiated waves 
for forced motions of the body in otherwise calm water, the mode of the forced 
motions corresponding to  the appropriate component of the exciting force or 
moment. I n  fact, the complex exciting force or moment is directly proportional 
t o  the complex amplitude of the radiated wave, with a constant of proportionality 
that is real if the phase is related to the incident wave amplitude a t  the origin. 
Thus the phase angles 8, and 6, are identical t o  the phase angles of the exciting 
forces and moments. I n  particular, 6,is the phase of the vertical exciting force, and 
both the horizontal force and rolling moment must have the same phase angle, 6,. 

6. The submerged circular cylinder 
A particular scattering problem of interest is the reflexion and transmission 

of surface waves by a submerged circular cylinder in water of infinite depth. 
Dean (194s) showed that for this case the reflexion coefficient R = 0, the waves 
being totally transmitted but with a phase shift 6,. Ursell(l950) re-examined the 
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problem, setting it on a more rigorous basis and outlining a practical scheme for 
computing the velocity potential. Ogilvie (1963) has presented a coinplet’e 
numerical solution, including the magnitudes and phases of the vertical and 
horizontal forces acting upon the cylinder in both the scattering and radiation 
problems. 

Since R = 0, (27)-(30) imply the relations 

8,-Ss = &r, 6, = 28,. 

From (31) the phase of the antisymmetric radiated waves, and hence also the 
horizontal exciting force, will lead the symmetric radiated waves and vertical 
exciting force by a quarter-period. This is consistent with Ogilvie‘s ( 1  963) 
equation (27). From (32) (and the Haskind relations), the phase of the trans- 
mitted wave is twice the phase of the horizontal exciting force, and this is con- 
firmed by Ogilvie’s (1963, p. 467) analysis, which includes a physical explanation 
concerning the plausibility of this result. Thus specific results of Ogilvie ( 1  963) 
confirm our relations (27)-(30), but the completeness of his treatment of the 
problem precludes additional conclusions or extensions here. 

7. The vertical flat plate 
A number of analytic solutions have been carried out for scattering ncd rnclia- 

tion from a vertical flat plate which is either intersecting the free surf;ice or corn- 
pletely submerged. I n  this case the reflexion coefficient is non-zero. offering 
a better opportunity to test our relationships. 

For this problem the vertical wave force is zero (in the linear tlicwj-), and 
there is no wave radiation associated with vertical oscillations. Kevert!ieless, 
the symmetric phase angle can be inferred by recalling that any symmetric 
mode of forced motion will suffice to  determine JS. A non-trivial mode is that of 
symmetric expansion of the vertical plate, and in the simplest exai::ple (corre- 
sponcling to a delta-function mode of expansion) we may replace tllc plate by 
a point source of oscillating strength. Prom the known expressions for an ojcillat- 
ing source beneath a free surface (cf. Wehausen & Laitone 1960, eyliation 13.31 
or 13.34 for infinite or finite depth, respectively), it can be veriiled that the phase 
angle 8, = in. In fact, the same result follows from a more elementary ctdculntion 
based upon the plane-wave potential, for iff(y) is a specified horizontal velocity 
on the vertical axis, it follows from our argument regarding the uniqaeiicss of 
phase angles that as is independent of the choice off(y) so long as this function is 
real. (This fact is confirmed by the ‘wave-maker theory’ of Havelock 1929.) The 
simplest choice forf(y) is the horizontal velocity of a plane wave. The appropriate 
outward-radiating wave for positive z is proportional to  eciKS and, after clifLren- 
tiation with respect to x, we conclude that the phase angle relating tiic radiated 
wave potential to the normal velocity on the flat plate is in. 

With 8, = in, i t  follows immediately from (23) that  

R+T = 1. (33) 

This property is well known for the surface-piercing vertical plate (cf. Il’ehausen 
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&, Laitone 1960, p. 532) and can be confirmed for the submerged case from Evans’ 
(1970) equations (38) and (39). Our analysis shows that (33) is also valid for the 
case of finite depth and for the scattering problem of oblique waves studied by 
Evans & Morris (1972b). The phase angles of the horizontal exciting force and 
rolling moment, 8, = c( + +r, also can be compared in the above problems: our 
relations are consistent with Evans’ (1970) equations (73) and (74) for the sub- 
merged case and with corresponding results obtained by Kotik (1963) for the 
surface-piercing flat plate. I n  the light of our conclusions regarding the nnique- 
ness of S,, it is more readily understood why the forced rolling and horizontal 
oscillatioii problems for vertical obstacles have the same phase angle and why, 
for example, there exists for such bodies a vertically displaced point of rotation 
such that rolling oscillations about this point do not radiate waves at iiifinity . 
In  fact’, we observe that these properties apply to more general bodies m c l  for 
finite depths as well. 

8. Summary and conclusions 
An espression relating the reflexion and transmission coefficients of the scatter- 

ing problem t o  the phases of symmetric and antisymmetric radiated waves has 
been derived. In  conjunction with the Haskind relationsit is possible also to relate 
the reflexion and transmission coefficients to the exciting forces acting on the 
body in the same scattering problem. Slternatively, both the reflexion and 
transmission coefficients, and the exciting forces, can be derived from the proper- 
ties of the radiation problem, making it unnecessary to solve the scattering prob- 
lem for these coefficients and forces. The results are limited to two-dimensional 
linear wave propagation, but apart from this restriction they are quite general 
and can be applied to other problems such as the scattering of water waves with 
oblique incidence, where the governing equation is a modified two-dimensional 
wave equation, and acoustic or internal waves in the regimes where only one 
radiating wave component is present. 

Using these relations one can verify or extend the calculations of several specific 
tvater-wave problems. In  $§6 and 7 this was done for a submerged circular 
cylinder and a vertical flat plate. Other body shapes have been treated numeri- 
cally, and it is possible to apply our results to these too, but the list of references 
is already lengthy, and the general ideas which follow from our relations should 
be sufficiently clear from the examples already chosen. 
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